If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-4y-10=0
a = 2; b = -4; c = -10;
Δ = b2-4ac
Δ = -42-4·2·(-10)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{6}}{2*2}=\frac{4-4\sqrt{6}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{6}}{2*2}=\frac{4+4\sqrt{6}}{4} $
| 7x-9=3x–4 | | g2+7g+12=0 | | 4x/3+3=5 | | a+6×2a+4=18 | | 2*(9x-4.5)=7,2 | | I. 5x-1=3x | | t2-10t-9=0 | | 6d-6=12 | | 250/y-3*y=55 | | 7x-15=4x–8 | | 3(x−7)=9 | | 2x(9x-4.5)=7,2 | | 2x+32=-7 | | x-4/4=x+3/12 | | (1-3x)/5=(x+3)/2 | | 7x-1/2-4x-6/2=7 | | 16*1,5x+4x=350 | | 1-(2x-3)=4x+4 | | 1+4x=7-3x | | 3x-4+5x-6+2x-2=4x | | 4m-15=180 | | 2-4-23(x+1)-2=4x+5 | | 8(x-1)=4(x+3 | | 21/2x=1/4 | | 12×-36=3x | | 8+3a=33-2a | | 4(y-6)=2y-4 | | 5+3(2x+3)=15+4x | | 7k-3k=69-5k | | 3+2x-5=6 | | 2x-67+x-17+3×=360 | | 7x+34+10x-23=90 |